タイトル画像および背景画像:マーズオービターカメラ(MOC)システムで撮影した火星
Image from (C)NASA
星空案内はこちらのページと一緒にお読みください
早い梅雨明けとなった関東地方に対して、西日本では集中豪雨災害も発生した7月、被害に遭われた皆様には、心よりお見舞い申し上げます。さらに梅雨明け後は連日の猛暑となり、夜になってもなかなか気温が下がらず、寝苦しい日々が続いています。 | |
そんな夜、外に出て夜空を見上げてみると、美しい星たちが輝いています。夏の夜空は一等星が多く、星空がにぎやかな季節ですが、今年はそこにさらに4つも惑星が加わり、大賑わいとなっています。まず、太陽が沈んだあとの夕焼け空の中に一番星として見えるのが、宵の明星の金星です。今月の金星までの距離は光の速さで約6分で、これから急速に地球に近づいてきます。今年の秋まで、金星は宵の明星として夕方の空に見ることができます。 金星は地球より内側をまわっているので内惑星と呼ばれています。内惑星は、地球と太陽との位置関係により、見かけの大きさと明るさが変化します。その様子はこちらのページで解説しています。 |
天体望遠鏡で見た 昼間の金星 |
その金星が西の空に沈む午後9時ごろの星空のようすを見ると、西の空には、おとなしめに輝く春の星座がまだ見えています。北西の空の中ほどには北斗七星が見えています。北斗七星は星座ではなく、おおぐま座という星座の一部になります。おおぐま座には、3月のこのページで紹介したM81とM82や、4月のこのページで紹介したM97とM108など、小望遠鏡でも楽しめる銀河がたくさんあります。是非宇宙を延々と旅してきた星たちの光をあなたの目で確かめてみてください。 北斗七星は、北極星をさがす目印にもされますし、また、柄の部分のカーブをそのまま延ばして、春の星の中で最も明るいうしかい座のアークトゥルス(約37光年)を経ておとめ座のスピカへと続く春の大曲線の一部としても使われます。おとめ座には、昨年6月のこのページで紹介したおとめ座超銀河団があります。また、春の大曲線の内側にあるりょうけん座という小さな星座には、先月のこのページで紹介したM51銀河や、2014年4月のこのページで紹介した球状星団M3など、明るい星雲星団があります。 |
さらに、春の大曲線の終点にあるスピカの東(左)に、特に目立って金色に輝いているのが木星です。木星は5月9日に「衝」を迎え、今が最も良く見える時期です。木星までの距離は光の速さで約40分かかりますが、木星は太陽系最大の惑星で、その直径は地球の11倍もあるため、望遠鏡でも表面の模様が良く見えます。木星をはじめとした太陽系の天体の大きさが解る図がこちらのページにあります。 木星を望遠鏡で見ると、本体にある縞模様や、まわりをまわるガリレオ衛星と呼ばれる4つの衛星を見ることができます。これは、1610年にイタリアの天文学者ガリレオ・ガリレイが初めて望遠鏡で木星を見たときに発見した衛星で、イオ・エウロパ・ガニメデ・カリストという名前が付けられています。木星はその明るさと大きさから大神ゼウスのローマ神話での呼び名ユピテル(Jupiter=英語でジュピター)と呼ばれており、そこをまわる衛星には、ゼウスに仕えていたニンフなどの名前が付けられているのです。 |
デジタルビデオカメラで撮影 |
一方、南の空から空の高いところを見てみると、明るい星の多い夏の星座が見えています。東の空の高いところに、明るく輝く白い3つの一等星で作る大きな三角形を見つけることができます。こと座のベガ(25光年)・わし座のアルタイル(17光年)・はくちょう座のデネブ(2600光年)で作られる「夏の大三角」です。中国から伝わった七夕伝説の「織り姫」と「彦星」は、それぞれベガとアルタイルだと言われています。 夏の大三角からさらに南の空の低いところに目を移すと、今年の夏の南の空には、さそり座のアンタレス(620光年)と並んでいて座の中に土星が見えています。土星も6月27日に「衝」を迎え、今が最も良く見える時期です。土星までの距離は光の速さで約80分かかります。土星を望遠鏡で見ると、下の画像のようにくるっとドーナツ状の輪が取り巻いている様子を見ることができます。 さらに土星と並んで少し低い南東の空からは、ひときわ不気味に赤く輝く火星も昇ってきます。 |
この夏の火星・木星・土星の位置 5月12日未明 山口県角島にて撮影 中央にさそり座 右上の明るい星が木星 中央やや左上の天の川の中に土星 さらに左の中央に火星 この夏は、各惑星ともほぼこの位置で輝きます |
20cmクラスの望遠鏡で見た土星 デジタルカメラで撮影 |
|
火星は地球のすぐ外側をまわる惑星ですが、約2年2ヶ月ごとに地球に接近します。しかし、接近ごとにその距離が異なります。その理由は、火星の軌道が真円ではなくちょっとゆがんだ楕円をしているためです。 下の図は、その軌道を上から見た図になります。地球軌道と火星軌道が離れている2月ごろに接近するときには小接近になりますが、軌道が接近している8月ごろに接近するときには大接近になるのです。 |
2016年から2029年までの地球と火星の接近する位置 地球の軌道を鉛直方向から見た図 2018年7月31日の大接近は大変良い条件になります |
|
||||||||||||||||||||||||||||
これから15年間の地球と火星の接近する日とその距離・大きさのシミュレーション 最遠のときは太陽の向こう側にあるので、地球からはみることができません。 |
今月の火星までの距離は光の速さで約3分で、これからさらに地球に接近し、7月31日には2003年以来15年ぶりの大接近になり、いまが観望の絶好の機会です。是非火星を観察して、その変化をご自身の目で確かめてみてください。 |
2018年の火星の見かけの大きさ(視直径)の変化の様子 右下の数値は地球から火星までの距離 1AU(=Astronomical Unit 天文単位)は地球と太陽の平均距離 |
宇宙から見た2018年の地球と火星の接近の様子 Java scriptの関係で上の図が見られない場合はこちら 緑が地球の軌道・赤が火星の軌道 その内側の水星と金星の動きにも注目してみましょう。 各惑星の大きさはわかりやすいように大きくしてあります。 地球が火星に接近して、離れていく様子がわかりますね。 |
16世紀ポーランドの天文学者コペルニクス(Nicolaus Copernicus 1473〜1543)がはじめて唱えた地動説以後、世界中の天文学者が現在まで宇宙を見つめ続けて、現在も様々な角度から研究が進められています。そのなかでも、私たちに身近な天体である太陽系天文学の変遷をこちらのページにまとめています。それぞれの時代の天文学者やアマチュア天文家が火星を観測し、火星が地球に接近する度に新たな発見を繰り返してきたのです。 天体にはじめて望遠鏡を向けたイタリアの天文学者ガリレイ(Galileo Galilei 1564〜1642)は、その表面にもやっとした模様があることを記録に残しています。オランダの ホイヘンス(Chritiaan Huygens 1629-1695)は、赤い火星の表面に逆三角形の黒いところがあることを発見し、それが約24時間ごとに現れることを発見しました。つまり、火星も地球と同じように約24時間で自転していることを発見したのです。イタリア出身でフランスで研究をしていたカッシーニ(Giovanni Domenico Cassini 1625-1712)は、ホイヘンスが発見した自転軸の方向に白い部分があることを発見しました。火星の北極と南極にあたる場所にあるため、これを極冠(Corona polare)名づけました。 さらに18世紀に入り、ドイツ出身でイギリスで研究していたハーシェル(Frederick William Hershel 1738〜1822)は、その極冠の大きさが南北交互に変わることを発見し、地球と同じように火星にも季節があることを発見しました。(余談ですがハーシェルはもともとオーケストラのオーボエ奏者でした。実は私もオーボエ吹きです(笑)。) 天体望遠鏡も時代とともに大きな進化を遂げ、世界中で大口径の望遠鏡が作られるようになった19世紀後半、1877年に火星が大接近したとき、アメリカ海軍天文台のホール(Asaph Hall 1829-1907)は、ワシントンD.C.近郊にある「大赤道儀」と呼ばれていた26インチ(66cm)反射望遠鏡を使って、2つの衛星(フォボス・ダイモス)を発見しました。 |
|
この接近のときには、イタリアの天文学者スキアパレリ(Giovanni Virginio Schiaparelli 1835-1910)が、ミラノ郊外にあるブレラ天文台にドイツの光学技師メルツ(Georg Merz 1793-1867)が作った22cm屈折望遠鏡を使って火星をくまなく観測し、精密なスケッチを残しています。このスケッチにはそれぞれの模様に名前が書き込まれていて、それが現在もそのまま火星の地名として使われています。このとき、スキアパレリは火星表面に溝のような地形が多数あることを発見しました。これを"Caneli"(イタリア語で「溝」の意味のCaneloの複数形)と名づけています。 |
それがフランスのフラマリオン(Nicolas Camille Flammarion 1842-1925)によってフランス語に訳され、さらに英語の"Canal"(運河)と訳されたため、これがアメリカに渡ってからひとつの論争に発展します。アメリカのアマチュア天文家ローウェル(Percival Lowell 1855〜1916)は、自身の作った天文台でスキアパレリの書いたスケッチをもとに火星を観測し、その溝が「火星人が作った運河ではないか?」との仮説をたてました。ここからアメリカでの大論争が繰り広げられ、ローウェル氏を中心とする火星人肯定派と、その溝を工作物ではないとする天文学者バーナード(Edward Emerson Barnard 1857-1923)等の否定派が、いろいろな仮説を立ててお互いの正当性を主張しました。その検証をするためにより分解能の高い望遠鏡が必要となり、世界的に巨大望遠鏡建設がブームとなったのもこの時期です。この火星人の論争を題材にしたイギリスのウェルズ(Herbert George Wells 1866-1946)のSF小説「宇宙戦争」(原題"The War of the Worlds")は後に映画化されたことでも有名です。 |
Summer Sale! 2018 プレゼントキャンペーン! |
Summer Sale! 2018期間中(7月1日〜8月31日)に、下記おすすめラインナップ掲載の「スターゲイズおすすめセット」をお求めのすべてのお客様に、望遠鏡にスマートフォンを取り付けて月や惑星の撮影が楽しめる、スマートフォン to スコープアダプタ simpleをプレゼントいたします。 |
■お早めのご注文をお願い致します!!■ |
おすすめラインナップ掲載商品は十分な在庫をご用意してお待ちしておりますが、一部機種で品切れが発生してご迷惑をおかけしております。現在在庫の切れている商品については、ご予約の受付順にお届けいたします。なるべくお早めのご注文をお願い致します。 |
●このコーナーより商品をお申し込みの場合、代金のお支払いはクレジットカード・Amazonアカウント・楽天アカウント・代金引換・銀行振込・郵便振替・コンビニ決済(NP後払い)・ショッピングクレジット(分割払い)がお選びいただけます。はじめてご利用の方や、決済方法など詳しいことをお知りになりたい方は、こちらのページをご覧ください。 |
惑星や星雲星団の観望に最適な望遠鏡ラインナップ | ||
各マークについての解説はこちら | ||
はじめての星空には、まずは双眼鏡! | ||
BaK4ガラス使用のダハプリズムタイプ完全防水双眼鏡。軽量コンパクトで女性やお子様でもお使いいただけます。 | ||
スターゲイズオリジナル FH-842RFT双眼鏡 \15,000 |
||
当社おすすめの入門者向け天体望遠鏡 | ||
初心者の方にも末長くお使いいただけるしっかりした経緯台と、安価で手ごろな価格の鏡筒をセットにした、マニアもおすすめの経緯台式天体望遠鏡! | ||
ビクセン ポルタ"f"(エフ)シリーズ 経緯台式天体望遠鏡 \30,240〜 |
||
80mmF11.3の「良く見える」望遠鏡と、軽量ながらしっかりした微動付経緯台をセット。見る楽しさを味わえる入門者向け天体望遠鏡。 | ||
セレストロン OMNI XLT AZ80 経緯台式天体望遠鏡 \32,076 |
||
持ち運びに便利な小型軽量に主眼を置いた天体望遠鏡。取り扱いの簡単な手動導入経緯台とコンパクトな多機能自動導入経緯台の2種類を選べます | ||
Sky-watcher 90MAK/AZ-PRONTO/AZ-GTi \36,720〜 |
||
入門者向け天体自動導入望遠鏡の決定版!。手軽な価格と天体自動導入の便利さを両立したハイコストパフォーマンスモデル。 | ||
ケンコー Sky Exporer SE-GTシリーズ \39,000〜 |
||
ポータブル望遠鏡として圧倒的な人気を誇るETXシリーズ マクストフカセグレン光学系によるシャープな像は土星の輪も木星の縞模様もくっきり見えます。 | ||
Meade ETX-90PO
スターゲイズおすすめセット \79,800 |
||
老舗望遠鏡メーカーが総力を挙げて作り上げた天体自動導入望遠鏡 必要十分な導入・追尾精度を抜群のコストパフォーマンスで実現 | ||
セレストロン Nexstar SE-Jシリーズ \82,080〜 |
||
大口径望遠鏡を持ち運び可能にするドブソニアン式望遠鏡と最新の天体自動導入装置を組み合わせ、誰でも簡単に目標の天体が導入できる次世代の天体望遠鏡! | ||
|
||
|
Sky-watcher Gotoドブソニアンシリーズ
\129,600〜 |
|
もっと遠くの宇宙を見たい もっときれいな写真が撮りたい | ||
写真撮影に最適なドイツ型赤道儀に、高性能な天体自動導入装置をドッキング! 鏡筒を載せ変えて様々な用途に使用できます | ||
セレストロン Advanced VX赤道儀 \135,000〜 |
||
セレストロンの天体自動導入望遠鏡最新モデル 内蔵Wi-Fiでスマートフォンやタブレットから直接望遠鏡をコントロール! 至れり尽くせりのユーザーフレンドリーな望遠鏡 このクラスでいちばんのおすすめ商品! | ||
セレストロン Nexstar Evolution-Jシリーズ \213,840〜 |
||
天文台級の望遠鏡を持ち運びできる大きさに!国際宇宙ステーションにも搭載されている本格派の天体自動導入望遠鏡 | ||
セレストロン CPC-Jシリーズ |
||
Meade天体自動導入ロボットの最新版 新機能の電子ファインダーで、天体自動導入に必要な初期設定を完全自動化したLSシリーズが新発売 | ||
Meade LSシリーズ \291,600〜 |
||
Meade天体自動導入ロボットの定番 モーターで目的の天体をどんぴしゃり 大口径で迫力のある像をお楽しみいただけます | ||
Meade LX90シリーズ \362,880〜 |
||
Meadeの天体自動導入ロボット GPS搭載で初期設定までも自動化! 最新自動導入コンピュータオートスター2で抜群の計算能力と導入精度を誇るフラッグシップモデル | ||
Meade LX200シリーズ |
この他にもいろいろな商品をラインナップしています。是非オンラインショッピングをご覧ください。
このコーナーのバックナンバー | |||
2018年夏 6月 7月 | |||
2017年夏 6月 7月 8月 | 2017年秋 9月 10月 11月 | 2017-18年冬 12月 1月 2月 | 2018年春 3月 4月 5月 |
2016年夏 6月 7月 8月 | 2016年秋 9月 10月 11月 | 2016-17年冬 12月 1月 2月 | 2017年春 3月 4月 5月 |
2015年夏 6月 7月 8月 | 2015年秋 9月 10月 11月 | 2015-16年冬 12月 1月 2月 | 2016年春 3月 4月 5月 |
2014年夏 6月 7月 8月 | 2014年秋 9月 10月 11月 | 2014-15年冬 12月 1月 2月 | 2015年春 3月 4月 5月 |
2013年夏 6月 7月 8月 | 2013年秋 9月 10月 11月 | 2013-14年冬 12月 1月 2月 | 2014年春 3月 4月 5月 |
2012年夏 6月 7月 8月 | 2012年秋 9月 10月 11月 | 2012-13年冬 12月 1月 2月 | 2013年春 3月 4月 5月 |
2011年夏 6月 7月 8月 | 2011年秋 9月 10月 11月 | 2011-12年冬 12月 1月 2月 | 2012年春 3月 4月 5月 |
2010年夏 6月 7月 8月 | 2010年秋 9月 10月 11月 | 2010-11年冬 12月 1月 2月 | 2011年春 3月 4月 5月 |
2009年夏 6月 8月 | 2009年秋 9月 10月 11月 | 2009-10年冬 12月 1月 2月 | 2010年春 3月 4月 5月 |
2008年夏 6月 7月 8月 | 2008年秋 9月 10月 11月 | 2008-9年冬 12月 1月 2月 | 2009年春 3月 4月 5月 |
2007年夏 6月 7月 8月 | 2007年秋 9月 10月 11月 | 2007-8年冬 12月 1月 2月 | 2008年春 3月 4月 5月 |
2006年夏 6月 7月 8月 | 2006年秋 9月 10月 11月 | 2006-7年冬 12月 1月 2月 | 2007年春 3月 4月 5月 |
2005年夏 6月 7月 8月 | 2005年秋 9月 10月 11月 | 2005-6年冬 12月 1月 2月 | 2006年春 3月 4月 5月 |
2004年夏 6月 7月 8月 | 2004年秋 9月 10月 11月 | 2004-5年冬 12月 1月 2月 | 2005年春 3月 4月 5月 |
2003年夏 6月 7月 8月 | 2003年秋 9月 10月 11月 | 2003-4年冬 12月 1月 2月 | 2004年春 3月 4月 5月 |
2002年夏 6月 7月 8月 | 2002年秋 9月 10月 11月 12月 | 2003年冬 1月 2月 | 2003年春 3月 4月 5月 |
2002年春 4月 5月 | 2002年冬 2月 3月 | 2002年正月 | 2001年冬 |
2001年秋 10月 11月 | 2001年夏 | 2001年春 | 2001年正月 |